

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 1 of 9

Technical Note

Overview

When using any network protocol such a Modbus to transmit data between two devices,

inconsistencies in methods of organizing the data can lead to incorrect values in the data

registers.

Bits, Bytes, and Words

Internally, all processors “speak” binary, a series of 1’s and 0’s called bits that when taken

together represent a piece of data.

Instead of representing bits as only ones or

zeros, groups of four bits are represented

by a single character (0-9 with values of

10-15 being represented by the letters A

through F). This base-16 numbering

system is called hexadecimal (or hex).

Groups of eight bits form a byte. These are

represented by two hexadecimal

characters. A word is made up of two

bytes (16 bits).

Different data types take up a different amount of data. The most common in Modbus are:

Datatype Description Bits

INT Integer 16 Also UINT – Unsigned Integer

DINT Double Integer 32 Also UDINT – Unsigned Double Integer

REAL Floating point 32

LREAL Long Floating point 64 Not supported by all devices.

BOOL Boolean (bit) 1

WORD Word 16

DWORD Double Word 32

Understanding byte order and endianness

When sending data from one device to another, different processors use different formats of

sending the bytes. In the example above, some processors will first send the least

significant byte (39) and then send the most significant byte (30). This is called “Little

Endian” because it’s sending the little end of the data first. Other processors will send the

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 2 of 9

Technical Note

data in the opposite order. First 30 and then 39. This is called “Big Endian” because it’s

starting at the big end.

If one device formats its data with big endian and another with little endian, then the data

being transmitted will not be decoded correctly.

To alleviate this discrepancy, the order that the bytes are read must be swapped so that the

two devices are interpreting the data the same way. This can be done on either device.

The above example is for a 16-bit data type, but the same idea holds true for 32-bit data:

Big endian sends the big end first, and little endian reads the little end first. The words are

swapped and the bytes that make up the word are also swapped.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 3 of 9

Technical Note

Endianess when using Modbus

Modbus defines how data is to be formatted for 16-bit data; it uses the big endian format. It

does not, however, define how data is formatted for 32-bit data. Different manufacturers

have different methods of sending the data.

A big endian device would send the data the same way. If the number (hex) 01 02 03 04 is

sent over Modbus, the byte order would be the same as before: First 01, then 02, then 03,

then 04.

A little endian device would normally

send 04 03 02 01, but this is not how it

works over Modbus. Modbus

specifications dictate that the individual

16-bit segments (words) are in big

endian order, but then those big endian

words are sent in little endian order.

This creates a hybrid format.

How endianness is handled by

MPiec Controllers

Different models of MPiec controllers have different endianness:

Controller PLC Runtime Endianness

MP2300Siec / MP2310iec ProConOS Little endian

MP2600iec eCLR Little endian

MP3200iec / MP3300iec eCLR Big endian

MPiec controllers allow you to select different types of registers in which to store data.

When using %I and %Q registers, endian translations were handled automatically by the

controller based on data type. Byte swapping was sometimes still necessary but it was

generally an easy fix. The disadvantage of these types of registers is that they can only be

written to by one of the devices. If two or more devices needed to make changes to the

same register, the user had to manually configure multiple variables and keep track of

which were the valid values.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 4 of 9

Technical Note

 MotionWorks IEC version 3.x introduced %M registers for Modbus. A %M register allows

for reading or writing to the same register by multiple devices. Because both big and little

endian devices can write to these registers, it is not possible to automatically handle endian

conversions.

 Since Modbus specifies the format of a 16-bit word, either big or little endian controllers will

swap bytes within a word. How they read or write

words to Modbus will differ, however, based on

endianness.

 Big endian controllers will write the high

word first.

 Little endian controllers will write the low

word first.

Often, other devices such as HMIs are also

writing to and reading from the %M registers.

They could be using big endian, little endian, or a

hybrid format. As a result, it can be a challenge to

get data transmitting correctly.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 5 of 9

Technical Note

Word Swapping between devices

 16-Bit Data Types: Since 16-bit data format is

specified by Modbus, there is no need to swap bytes

regardless of endianness of the controllers.

32-bit Data Types: The Modbus specification requires 16-bit words to be big endian, but

the word order is not specified by the specification. Typically, big endian controllers require

a word swap in the HMI, but little endian controllers do not.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 6 of 9

Technical Note

Appendix 1: Communicating with %M registers with VIPA Movicon (v11.4.1151)

VIPA’s Movicon software gives users the

ability to swap bytes and swap words

when communicating via Modbus. This is

done in the Task Properties settings. The

Task Properties can be opened via the

“Comm I/O Drivers” in the Tag Browser,

and right-clicking a tag to edit its

properties. The properties that do this are

called Swap Bytes and Swap Words.

 Below are the appropriate settings for these selections based on controller and data-type:

1
Modbus determines correct byte order, so Swap Bytes is not changeable for 8-bit data types.

2
Writes to lower byte of the Modbus word

3
Writes to upper byte of the Modbus word

4
This cannot be accomplished via the HMI software. Use IEC byte swapping function blocks.

Controller Type 16-bit tag 32-bit tag 64-bit tag
Big Endian
(MP3200iec/MP3300iec)

Swap Bytes: True
Swap Words: N/A

Swap Bytes: True
Swap Words: True

N/A
4

Little Endian
(MP2600iec)

Swap Bytes: True
Swap Words: N/A

Swap Bytes: True
Swap Words: False

Swap Bytes: True
Swap Words: False

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 7 of 9

Technical Note

Appendix 2: Communicating with %M registers with Red Lion Crimson (v3.0)

Red Lion’s HMI programming

software, Crimson, has two different

places where byte-swapping can be

accomplished.

The first is in the ModBus

communication configuration settings.

This sets the default word order for all

variable types.

The two relevant fields are in the Word

Ordering section:

1. In Long Blocks is used for 32-

bit non-floating-point variables

2. In Real Blocks is used for 32-

bit floating-point variables

The second place where word order

can be set is in the individual tag

settings. The Manipulation field

indicates whether the data is sent in

the default byte order (as set above)

for a particular tag or whether it is to

be reversed.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 8 of 9

Technical Note

Appendix 2 (cont.): Communicating with %M registers with Red Lion Crimson

Below are the appropriate settings for these selections based on controller and data-type:

Controller Type 16-bit tag
1
 32-bit tag 64-bit tag

Big Endian
(MP3200iec/MP3300iec)

Word Ordering: N/A

Manipulation: None

Word Ordering
2
: High

Then Low (both)

Manipulation: None

Not supported
by Red Lion

Little Endian
(MP2600iec)

Word Ordering: N/A

Manipulation: None

Word Ordering
3
: Low

then High (both)

Manipulation: None

Not supported
by Red Lion

1
Word Ordering settings only apply to 32-bit tags.

2
Word Ordering of “Low then High” with Manipulation of “Reverse Words” will also work.

3
Word Ordering of “High then Low” with Manipulation of “Reverse Words” will also work.

Title: Data format and Endianness in MPiec Controllers

Product(s): MP3200iec, MP2300iec, MP2600iec,

MP3300iec
Doc. No. TN.MPIEC.02

Revision 1.2 April 10, 2018 Page 9 of 9

Technical Note

Appendix 3: Communicating with %M registers with Maple Systems EZWarePlus
(v4.10.07)

Maple Systems’ EZWarePlus HMI programming

software manipulates byte order in the Conversion

properties in the PLC Device Properties dialog.

Below are the appropriate settings for these selections based on controller and data-type:

Controller Type 16-bit tag 32-bit tag 64-bit tag
Big Endian
(MP3200iec/MP3300iec)

No byte swapping needed

Set ABCD->CDBA under
4x_Double to TRUE

Not supported
by Maple

Little Endian
(MP2600iec)

No byte swapping needed

Set all swapping to
FALSE

Not supported
by Maple

[Edit→System Parameters→Device→(Select PLC)

→Settings →(In Device Properties, choose

Conversion)]

